Monday, February 10, 2014

Combination Sum II @LeetCode


Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8
A solution set is: 
[1, 7] 
[1, 2, 5] 
[2, 6] 
[1, 1, 6] 


package leetcode.combinations;
import java.util.ArrayList;
import java.util.Arrays;
/**
* Almost same as CombinationSum I, Only difference is element can only used in combination once.
* As there're duplicate elements, we need to make sure result with no duplidates like subsets II.
*
* Element used once --> helper(xxx, i+1)
* Result without duplicates --> if(i!=position && num[i] == nums[i-1]) { continue; }
*
* i!=position --> only happens when backtrack, after move number1. number2 cannot be used.
* i==position --> just add number2, not iterative it. (We don't allow number2 iteration which number1 already does)
*
* @author jeffwan
* @date Feb 11, 2014
*/
public class CombinationSum2 {
public static void main(String[] args) {
int[] nums = {10, 1, 2, 7, 6, 1, 5};
int target = 8;
System.out.println(combinationSum2(nums,target));
}
public static ArrayList<ArrayList<Integer>> combinationSum2(int[] num, int target) {
Arrays.sort(num);
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
ArrayList<Integer> list = new ArrayList<Integer>();
combinationSumHelper(result, list, num, target, 0);
return result;
}
private static void combinationSumHelper(ArrayList<ArrayList<Integer>> result,
ArrayList<Integer> list, int[] num, int target, int position) {
int sum = 0;
for (int x: list) {
sum += x;
}
if (sum == target) {
result.add(new ArrayList<Integer>(list));
return;
}
if (sum < target) {
for (int i = position; i<num.length; i++) {
if ( i != position && num[i] == num[i-1]) {
continue;
}
list.add(num[i]);
combinationSumHelper(result, list, num, target, i+1);
list.remove(list.size() - 1);
}
}
}
}

No comments:

Post a Comment