Showing posts with label BinaryTree. Show all posts
Showing posts with label BinaryTree. Show all posts

Monday, April 14, 2014

Unique Binary Search Trees II @LeetCode

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3
confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

Minimum Depth of Binary Tree @LeetCode

Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

Monday, April 7, 2014

Unique Binary Search Trees @LeetCode

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

Tuesday, March 11, 2014

Symmetric Tree @LeetCode

Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
    1
   / \
  2   2
 / \ / \
3  4 4  3
But the following is not:
    1
   / \
  2   2
   \   \
   3    3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

Populating Next Right Pointers in Each Node @LeetCode

Given a binary tree
    struct TreeLinkNode {
      TreeLinkNode *left;
      TreeLinkNode *right;
      TreeLinkNode *next;
    }
Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Note:
  • You may only use constant extra space.
  • You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).
For example,
Given the following perfect binary tree,
         1
       /  \
      2    3
     / \  / \
    4  5  6  7
After calling your function, the tree should look like:
         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \  / \
    4->5->6->7 -> NULL

Same Tree @LeetCode

Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.

Sunday, February 16, 2014

Sum Root to Leaf Numbers @LeetCode

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
For example,
    1
   / \
  2   3
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Return the sum = 12 + 13 = 25.

Saturday, February 15, 2014

Path Sum @LeetCode

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

Path Sum II @LeetCode


Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
For example:
Given the below binary tree and sum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1
return
[
   [5,4,11,2],
   [5,8,4,5]
]

Thursday, February 13, 2014

Construct Binary Tree from Inorder and Postorder Traversal @LeetCode


Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.

Construct Binary Tree from Preorder and Inorder Traversal @LeetCode


Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.

Convert Sorted List to Binary Search Tree @LeetCode


Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

Convert Sorted Array to Binary Search Tree @LeetCode

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

Wednesday, February 12, 2014

Recover Binary Search Tree @LeetCode

Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?

Binary Tree Zigzag Level Order Traversal @LeetCode

Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).
For example:
Given binary tree {3,9,20,#,#,15,7},
    3
   / \
  9  20
    /  \
   15   7
return its zigzag level order traversal as:
[
  [3],
  [20,9],
  [15,7]
]

Binary Tree Level Order Traversal II @LeetCode

Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).
For example:
Given binary tree {3,9,20,#,#,15,7},
    3
   / \
  9  20
    /  \
   15   7
return its bottom-up level order traversal as:
[
  [15,7]
  [9,20],
  [3],
]


Binary Tree Level Order Traversal @LeetCode

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).
For example:
Given binary tree {3,9,20,#,#,15,7},
    3
   / \
  9  20
    /  \
   15   7
return its level order traversal as:
[
  [3],
  [9,20],
  [15,7]
]

Lastest Common Ancester



Find the Latest Common Ancestor of two TreeNode.
For Example,
Given
         1
        / \
       2   5
      / \   \
     3   4   6

 The LCA of 3 and 4 is 2. 5 and 6 is 5.

Binary Tree Maximum Path Sum @LeetCode


Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
       1
      / \
     2   3
Return 6.

Tuesday, February 11, 2014

Balanced Binary Tree @LeetCode


Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.