Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.

'Q'
and '.'
both indicate a queen and an empty space respectively.[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
'.'
."((()))", "(()())", "(())()", "()(())", "()()()"
0-9
only, each root-to-leaf path could represent a number.1->2->3
which represents the number 123
.1 / \ 2 3
1->2
represents the number 12
.1->3
represents the number 13
.25
.sum = 22
,5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1return
[ [5,4,11,2], [5,8,4,5] ]
[ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]